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We first generalize the inhomogeneous external field Ising model on a ring to 
include inhomogeneous couplings. We then further generalize the one- 
dimensional periodic lattice to the simplest multiconnected networks. The 
fundamental idea and techniques developed here may be also applicable to 
other problems where topological collective (nonlocal) modes are many fewer in 
number than total degrees of freedom. 
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1. INTRODUCTION 

The free energy functional format has become increasingly the instrument 
of choice for the analysis of nonuniform systems in thermal equilibrium. Its 
routine use in the classical statistical mechanics of fluids ~) was joined long 
ago by analogous procedures for fermion fluid ground states, (2) and 
more recently by complete solution of model classical lattice gases. (3) The 
models in question were initially one-dimensional--or Bethe lattice 
generalizations--and produced the striking result that, in this context, 
nearest neighbor interaction gave rise to nearest direct correlations and 
hence to nearest neighbor free energy representations. Put in another way, 
the inverse formulation, in which one asks for the applied potential 
associated with a given magnetization profile, maintains the nearest 
neighbor character of the interaction in the presence of arbitrary non- 
uniformity. This correspondence is broken, although the precise mechanism 
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is not known, in the presence of next nearest neighbor interaction. (5) A 
recent result is that it is also broken for a one-dimensional lattice with the 
topology of a circle. (6) In fact, it seems clear that any interaction network 
which is not simply connected will have nonlocal modes associated with 
any circuit of interactions, and that these will appear explicitly in 
magnetization profile or free energy. 

In the recent work alluded to above, it was also shown that the 
fashion in which global collective variables enter may be conceptually very 
simple. To be precise, the ring model could be regarded as existing on the 
extended space of local magnetization and global collective variable, with 
external potential conjugate to site magnetization at fixed collective 
amplitude, whereas the conjugate to the collective amplitude was zero, 
suggesting a dynamical infinite mass. In the present paper, we will examine 
the extent to which the suggested concepts apply to more complicated 
networks, supplying hopefully a topological background to the analysis of 
complex interactions networks. For this purpose, we devote our attention 
to the next level of complication, in which the circuit contains multibranch 
nodes and hence several connected loops. 

In summary, we first generalize the previous one-loop Ising network 
analysis to the case of inhomogeneous coupling, not merely to decorate a 
simple framework, but rather to serve as a tool for the ensuing computa- 
tions. We then proceed to the two-loop case, employing the artifice of 
regarding a whole loop as a superbond. The result is again an extended 
space representation, now requiring a collective parameter for each branch 
and one for the pair of nodes. Their global nature is reinforced by the 
observation that the partition function can be expressed in terms of the 
collective parameters alone. There follows a general proof that any system 
with the structure now uncovered can be expressed in terms of a free 
energy on the extended space of site magnetization and collective 
amplitudes. We then return briefly to the two-node multichannel case and 
quote the required generalization. 

2. G E N E R A L I Z A T I O N  OF T H E  O N E - L O O P  CASE 

We begin by generalizing our one-loop (one-dimensional ring) result 
to the case in which nearest-neighboring coupling is also inhomogeneous. 
Consider an Ising spin system {ax}, x =  1 ..... N, on a ring (Fig. 1); the 
partition function is 

N 

Z= ~ ]-[ Wx(ax) ex(ax, ax+l) (1) 
{ a x }  x = 1 
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Wx-1 W 2 

Wx~ ~W 1 
ex ~ ~ . . _ . . ~ ~ e N  

Wx+ 1 WN 
Fig .  1. 

where Wx(a)=(Vx)~ ex(a, ~')=exp(Jxaa'), and crx+ I ---a:,  or, 
in obvious matrix notat ion,  

N 

Z = Y r  l-[ W x e x = Y r w l e l  "' 'WNeN (2) 
x = ]  

Here, all energies are in units of kT. 
By introducing a normalized site-excised function, the matrix 

( x = e x w x + l e x + l W x + 2 . . . w x _ 2 e x _ 2 W x _ l e ~ _ : Z  -~ (3) 

we have the following basic recursive relation: 

o r  

If  we define 

then (4) is equivalent to 

~xWxex = exWx+ 1 ~x+ 1 (4) 

qx=Wx~x and qx=~xWx (5) 

q x =  WxqxW~: (6) 

~x  + 1 = e x l Y l x e x  

F r o m  these relations, we see that  

1 = T r  Y/x = Tr qx 

K = Det ~x = Det  ~/x = Det  f/x 

m2 = Tr at/x = Tr af/x 

mx+ 1 = Tr  ~rqx+ 1 = Tr Gex~qxex 

m~ 1 = Tr  ~r/x_ 1 = Tr o-e~_ t O~ex_l ~ 

(7) 

(8) 
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where o- = (o ~ _o) is the Pauli matrix, mx is the mean magnetization at site 
x, and K is a site-independent function, i.e., the global collective mode (K 
is related to the variable C in ref. 6 by C = 1 -  4K). Actually, using the 
definition of r/x, we can explicitly calculate the determinant in (7) (note 
that Det w~ = 1) 

Z -2  g = D e t  Z -1 Wxex = I~ Det(%) (9) 
x = l  )*=1 

We might have expected the ubiquity of such a K if we had rewritten (4) 
in the form 

QxlflxQx=Ox+l (10) 

where Q~-= Wxex (of course, one may use the dual equation for ~). There- 
fore, we see that the translation of ~(r/) is equivalent to a local similarity 
transformation which preserves its eigenvalues 21, 22 (they are invariant 
under translation!). From (7), K =  2122, with the conservation law 

Tr r/x=21+22=l 

It is obvious that the eigenvalues are the two roots of the characteristic 
equation 

2 2 - ) ~ + K = 0  

In terms of C, 21,2 = (1 _ x/-C)/2. 
From (9), we find 

tlx=f(mx, m~+l; e~ -1, K) 

qx= f(mx, rex_l;  ex_t, K) 
(11) 

or, explicitly, 

r/x( + l, _+ l ) = 0x( ___ l, + l ) = ( l + m x ) / 2  

2 4K) ]m l~=ax+,  [aZx + ( 1 - m  x -  
r/x(--1, 

2 
2 _ 4K)]'/2 - b x + [ b Z + ( 1 - m x  

qx(-1, 1)= 
2 

(12) 

where 

ax -= cosh(2Jx) mx - sinh(2Jx)mx+ 1 

bx=cosh(2Jx-1)mx-sinh(2Jx- l)rn~ i 
(13) 
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To get the profile equation, we simply use the off-diagonal element of 
(6) and find 

a 0x(1,-1)  r/~(-1,1) 
/ ) x - -  qx(1 , -1)  Ox(-1,1) 

2 4K)]  {ax + [a2x + (1 _ m2x_4K)]l/2}{ _ bx+Ebx+(  1 _mx_2 1/2} 
(14) 2 _ 4K 1 - m  x 

which immediately generalizes our previous result to inhomogeneous inter- 
actions. But the key result is unchanged: the profile equation in inverse 
form (Vx in terms of the mx) maintains the nearest neighbor character of 
the interaction, with the global amplitude K inserted by the ring topology 
serving as a site-independent parameter to be determined self-consistently 
(see Section 4). 

3. SOLUTION FOR THE TWO-LOOP CASE 

Now let us take a generic two-loop lattice, which consists of three 
chains E 1, E z, E 3 and two nodes A, B as shown in Fig. 2. We define new 
composite variables, with obvious notation, 

E "  = . . . . .  ( 1 5 )  eAWA+leA+I "''WA+N:~eA+Net 

3 
Q(a, a')= wA(a) l-[ E=( a, a') wB(a') (16) 

cc=l  

Hence 

Z =  ~, (~(rr, a') (17) 
o-, o-' 

WI+I W 1 
A+N 1 

e A / ~ ~ ~  eJk+N1 

WA ~ "~_'~ _ , 2  ~ "], W B 

W 3 + l  3 w .+N 3 

Fig. 2. 
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and the two-point correlation function between A and B is given by 

Q(a, a')= Q(a, a')/Z (18) 

Finding vx for x # A, B is easy, since we may treat the system as a ring 
with a superbond. For instance, supposing x to be on the first chain 
(Fig. 3), we can define a superbond E23(o ", o")~ E2(a, o-')E3(o -, o") between 
A and B. The solution will still be given by (14) with K depending upon 
which chain the concerned site lies: 

K~=Det(E~)Det(E~)/Z 2 with a # f l ~ 7  (19) 

If x is one of the nodes, the situation is much more complicated. Since 
we are seeking a local profile which may consist of one more (in addition 
to the K s) collective variable characterizing the node's structure, by 
symmetry, we only have to consider the case when x = A .  

With the obvious generalization t/~, for each channel, we have the 
following relation (Fig. 4): 

Y/~ = wAE~wB(E~) r 
or 

Q(o-, a') _~. 
0~,(o,-~) = 2 ~,~-7;7'-,zq~t-~' ~') (20) 

which yields [with r ~ -  r~%(1, - 1 )  0~ ( -1 ,  1 )=  (1 - m Z ) / 4 - K  ~] 

E"(a,a) 
E~(-a ,a)  

r~ + Q(o, a) Q(-a, a) - Q(-a, -a) Q(a, -a) 
2 0 ] ( a , - a )  Q(-a, a) 

+ 
{[r]  + Q(a, a) Q(-a, a)-Q(-a,-a)Q(a,-a) ]2-4Q(a,a)Q(-a,a)r]} 1/2 

20] ( a , - a )  Q(-o',a) 

wl+ 1 WL+N 1 

~ 3  
Fig. 3. 

(21) 
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o~ W ~ I  W c~ A+Not e A 

WA .,,ffw. 
EIBV 

Fig. 4. 

where -~ t/A can be expressed in terms of rn A, rnA+ 1, and K ~ according to 
(11). 

Since Q represents the correlation between aA and ~ ,  it is intrinsically 
a nonlocal function. To find a local expression for it (using either the 
magnetizations about A or about B, but not about both), we have to 
introduce one additional collective mode parameter which is symmetric 
with respect to A and B. To do so, we first notice that 

Q(1, a) WA(1) __ E~(1, a) 
Q ( -  1, a) WA(--1)|~IE~(--1, a) (22) 

which implies 

Q ( 1 , 1 ) Q ( - 1 , - 1 )  ]-I E~(1,1) E " ( - 1 ,  - 1 )  

Q ( - 1 ,  1) Q(1, - 1 )  1~ E ~ ( -  1, 1) E~(1, - 1) 
(23) 

If we define O(Q), O~(Q) by 

o /Q(-1,  1) Q(1, - 1 )  
e - 4Q-(i~, 1 ) ~ - -  ~, - 1) 

eO ~ / Q ( - 1 ,  1)Q(1, -1)E~(1 ,  1 )E~( -1 ,  - 1 )  
-= ~/Q--~, 1) Q ( -  1, 1) E ' ( - 1 ,  1) E~(1, ---~ 

(24) 

(25) 

then the fourth collective mode can be defined as 

K4 - cosh(0) 1 
1-[~cosh(0~) 

(26) 

822/56/5-6-10 
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For Q, we observe that since 

l + m  A 
Q ( _ I , _ I ) + Q ( _ I , ~ I ) - ~  (27) 

together with (23) and (26), Q can be determined as a matrix function of 
mA, m~+~ for fixed K ~ and K 4. The solution, which involves a tedious 
fourth order algebraic equation, is shown in the Appendix. 

Finally, from (22), one can easily see that 

2 Q(1,1) ~ E ~ ( - 1 , 1 )  (28) 
VA Q ( - 1 , 1 )  | )  E-=(-iT,-1) 

is also a local function of the magnetizations for fixed parameters. And 
by complete analogy, vB may also be obtained. In conclusion, hx depends 
only on mx and mx, (where x'  is a nearest-neighbor site of x). For  x on 
chain c~, hx has only K ~ as its parameter (couplings J~ are considered as 
constants); for x = A, B, it has all four parameters K ~, K 2, K 3 and K 4. 

4. THE N A T U R E  OF COLLECTIVE M O D E S  A N D  THEIR 
RELATION TO THE PARTIT ION F U N C T I O N  

From the definition of the K ~ in (19), it is clear that if we break any 
bond in the �9 channel, i.e., J~ =0 ,  then e;  and hence E ~ will become 
singular (its determinant will become zero), so that K ~ = 0  and K p = K L  
Furthermore, from (25) and (24), we see that 0 = 0 n and 0~ = 0 r = 0. There- 
fore, according to (26), K 4 =  0. 

AS another special case, if we have uniform magnetization on all the 
chains except that mA, mB may be arbitrary, then K ~ = K ~ = K r ;  hence 
20/3 = 0~ = 0a = 0~ and g 4 = cosh(0)/cosh3(20/3) - 1. 

In order to explore the relation between the collective modes and the 
partition function, let us rewrite (19) as 

K ~ 
d~s~ + d~s~ = ~ Z 2 (29) 

where 

and 

1 N= 
d~ - (Det E~)/2 = ~ I - I  Det e ]  +~ 

i=o 

E~(1, 1) E ~ ( - 1 ,  - 1 ) + E ~ ( 1 ,  - 1 )  E = ( - 1 ,  1) 
S~ 

2 
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Solving this set of equations, we have 

K B + K ~ _ K ~ 
Z 2 

s~ - 8de d~ (30) 

On the other hand, from (23)-(25), 

O= - ~ In 1-[ s~+d~ 
s~ --- d-~ ~ tanh-~ (d~) (31) 

By substitution of s~ and using the definition (26), we obtain 

(2)4 I--[~ d2 4 
= g 4 E ( g 2 _ ~ _ g 3 _ g l ) ( g 3 . . ~ g l . j v g 2 )  

permutations 
(32) 

As in the case of a ring, the partition function can be entirely expressed in 
terms of the collective modes alone. Thus, the amplitudes K ~ control both 
the profile, via (21), (27), and (28), and the thermodynamics, via (32). Our 
next task is to determine the K ~. 

5. LOCAL FREE ENERGY D E N S I T Y  F U N C T I O N A L  IN THE 
EXTENDED SPACE 

For  a lattice on a simple ring, with a single collective amplitude K, we 
were able to show previously that a free energy could be defined on the 
extended space (m, K) which served as generating function for the applied 
potential field conjugate to m, determined K by the condition that its 
conjugate vanish, and reduced to the physical free energy function on m 
upon insertion of K =  K(m). In the present situation, where we have the set 
of amplitudes K = (K 1, K 2, K 3, K4), and the corresponding extended space 
(m, K), a fully analogous result applies. 

The argument is quite general. Suppose that there are d collective 
variables K 1 ..... K d. Given sites x and y, if the system is large enough, we 
can choose sites z 1 ..... Zd such that [z~ - x [  > 1, [z~ - y[ > 1 for each ~. Now 
let us examine the chain rule relation (Einstein summation convention used 
throughout)  

~hx ~hx ~hx m ~KV (33) 
8rny g3my K dr- - ~  63my 

where x runs over the sites z~. We have seen that hx is local in the {my} 
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at fixed K, containing at most nearest neighbor terms. Thus, with the above 
choice of sites, the first term on the right will vanish: 

Ohz= =8hz~ aK" (34) 
amy 8K" m amy 

Since the hz~ are independent, 8hz,/aK~lm is invertible, and by 
integrability ahz,,/amy = 8hy/amz~, so that 

8K v aK ~ 8hy (35) 
amy ahz~ ,,, amz, 

or, according to (33), 

OK ~ OK ~ ahy aK ~ (36) 
amy ahz~ m OK ~ m amz~ 

Hence (33) becomes 

ahx ahx ahx aK ~ ahy m 8K~' 
amy = amy g q- aK~ m 8h~= m ~ 8mz~ 

ah x K+ahx ahy aK v a h z a K  ~' 
(37) 

amy aK ~ m OK ~ m ahz~ m am~p ah~, 

The lhs of (37) and the second term on the rhs of (37) are symmetric 
in x and y, and so we conclude that 8hffamylK is symmetric as well: 

8hx = ahy (38) 
amy K 8mx x 

It follows from the integrability condition represented by (38) that 
there is a free energy on the expanded space such that 

h ~ -  OF[m, K] (39) 
amx K 

But we also know that there is an F(m) for which h~ = 8F/amx. Hence, as 
in refs. 4 and 6, 

0 = 8(ff(m) - F [ m ,  K] )/am:, + 8F/aK ~ aK~/amx 

which implies that F - F  and the K ~ are functionally related, i.e., 

F [ m ]  = F [ m ,  K(m)] + W(K(m)) (40) 
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for some function W. We conclude therefore on defining 

F[m, K] =V[m,  K] + W(K) 

that 

and 

F[m, K(m)] = F[-m] 

0FEm, K] 
hx 

0mx 

OF[m, K] X=K(m) 0 0K 

From definition, we know that 

F i r e ]  = ~ mxhx-  in Z 
x 

1 

Fire,  K] = ~ m x fo d2 hx(2m, K) 
x 

From (40), we get 

(41) 

(42) 

(43) 

f~ Ohx(2m'K(m)) d2-1nZ(K(m)) (45) W(K(m)) = ~ mx 2 02 
x 

In order to construct F(m, K), we need to know W. On the other hand, 
according to (45), W(K) can be found if m(K) is known for any special 
case with four adjustable parameters. There is no particular virtue to 
exhibiting the explicit form of W(K)--this has been done in the case of a 
simple ring--but the procedure is easily described. We may take, for 
instance, the special piecewise uniform system defined by rnA =rob- -m 4, 
m~= m =. Now K can be calculated directly by using their definitions (19) 
and (26) together with (23)-(25), because E ~ depends only on hx for 
x#A,  B, which is a simple function of local m and K ~, (14) [see the 
paragraph above (19)]. Since Z as a function of K is also known (32), from 
these definitions of K we should then solve for re(K) and substitute back 
into (45) to get W(K) explicitly. With this W, the free energy functional in 
the extended space becomes 

F [ m , K ] =  W(K)+ mx d2 02 

It is clear that, since hx(m, K) is local, so is F. 

f~ ~h~(2m, K) d2 (44) =E m h (m, 
x x 
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6. G E N E R A L I Z A T I O N  TO M A N Y  C H A N N E L S  

Almost all of the previous discussion can be extended to the case 
where e runs from 1 to n (there are n - 1  independent loops). The 
necessary changes are the following: 

0 should be defined as 

eo=(Q(-1, 1)Q(1,-1)))  ("'2)/2 

\Q(1, 1 )Q( -1 ,  1 
(47) 

Equation (29) should be replaced by 

K ~ 
lq (48) 

The solution s= should be substituted into the expression for the (n + 1)th 
collective variable 

Q i~ I 4 2En/2] ) 
Kn+l = 2 tanh 0~ + I-[ tanh 0~ + ... + 1-[ tanh 0~ (49) 

permutations = 1 ~ = 1 ~ = 1 

where O~=(2-n) tanh-~(dJs~). This is the equation which determines 
Z(K) instead of (32). 

7. C O N C L U S I O N  

The dynamical variables of an Ising lattice are the ensemble-averaged 
site magnetizations. Equilibrium in the one-dimensional lattice With 
nearest-neighbor coupling is characterized ~3) by a free energy which 
likewise couples only nearest neighbors. When the topology is altered by 
imposing periodic boundary conditions, this locality is broken by the 
appearance of a global mode variableJ 6) We have here examined the 
topological situation of several circuits with a common pair of nodes, and 
found that each arm of the network introduces a collective mode, in addi- 
tion to one emanating from the pair of nodes. The free energy structure is 
again nearest-neighbor local on the extended magnetization-mode space, 
with the mode conjugate variables vanishing in equilibrium. This situation 
appears generic for Ising networks, and we intend to show in a future com- 
munication how the techniques of this paper apply, with some alternation, 
to analysis of a general Ising network. 
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A P P E N D I X  

In this Appendix, we derive the fourth-order algebraic equation which 
generates a solution for Q(mA, m~+l ;  K ~, K4). We start by defining new 
variables 

x = Q ( 1 , 1 ) Q ( - 1 , 1 ) ,  y =  Q ( - 1 , -  1 ) Q ( 1 , - 1 )  
(A1) 

z =  Q ( - 1 ,  1), y =  Q(1, - 1 )  

and 

u = x +  y, v = (xy) ~/2 (A2) 

With these variables, Eqs. (27) and (24) become 

x l + m ~  - + ~ = - -  
z 2 

1 V • m • 

~ + z  - (A3) 
z 2 

z~= (xy)l/2 e ~ 

From these, we get 

2v cosh 0 + u = (1 - m])/4 - M A 

On the other hand, (23) means that 

(A4) 

0 = 01 + 02 + 03 (A5) 

Therefore, for K 4 we have (with t~--tanh 2 0~) 

K 4 = (tl t2) ~/2 + (t2 t3) 1/2 + (t3 tl)1/2 (a6) 

or equivalently 

[ ( K 4 ) Z - t l t z - t z t 3 - t 3 t l ] 2 - 4 t l t 2 t 3 ( 2 K 4 + t l + t 2 + t 3 ) = O  (A7) 

Instead of using (22), we can find a more symmetric expression. 
Taking the product over a = +1 on both sides of (20), we get 

r ~ = Q ( - 1 , 1 ) Q ( 1 , - 1 )  
E~(1, 1) E~( -1 ,  - 1 )  

E~( -1 ,  1) Er - 1 )  

E~( -1 ,  1) E~(1, --1) 
+ Q ( - 1 ,  - 1 ) Q ( 1 ,  i) 

E~(1, 1 )E~( -1 ,  - 1 )  

+ Q ( 1 , 1 ) Q ( - 1 , 1 ) + Q ( - 1 , - 1 )  Q ( 1 , - 1 )  (AS) 
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or 

c~ _ g ~ r A - u MA -- u 
cosh(0~) - 2 ~  2v (A9) 

By substituting this into (A4), 

( M A - . K ~ - u )  MA- -u  
c~ =- (K4 + 1) ~l~I \ 2v = 2v 

(A9) and (A10) give 

t= = 1 - (cosh 0~) -2  = 1 - ( g  4 -t- 1 )  
(~7 + Kt~)(5 + K ~) 

if(5 + K ~) 

where 

(A10) 

( A l l )  

~ = - u - M a = u  1 - m ]  
4 (A12) 

Finally, by substituting ( A l l )  into (A7), we obtain  the fourth-order  
equat ion for ~ and hence for u. Once u is found, v 2 can also be solved by 
(A10). The x and y will be given by the two roots  of  the quadrat ic  equa- 
tion 

t2--utWv2=O 

z and f will be given by the first two equations in (A3). Since v ]  depends 
only on x, y, and z/~ [see (28) and (21)] ,  it can therefore be regarded as 
solved, too. 
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